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1. Introduction 

It is useful to calculate deflections and internal forces of the circular plate whose boundary is elastic fixed on 

an elastic foundation. The term 《elastic fixed》 means a vertical displacement exists and a rotation  angle 

doesn’t exist at the boundary.  One of practical objects is a boundary of circular chimney’s base. Generally, a 

base of structure with a circular wall belongs to this. 

In McFarland,et. al. 1972, the deflection differential equation of circular plate subjected to lateral loads was 

derived and four kinds of boundary conditions were introduced [1]. By Jawad, 2004, the general solution of 

deflection of the circular plate resting on elastic foundation was presented [2]. And a solution with a 

boundary condition was saved also there. By [3] the general solution for the bending nonhomogeneous 

circular plates resting on an elastic foundation is obtained under arbitrary axial symmetrical loads and 

boundary conditions. The solutions for large deformation of nonhomogeneous circular plates resting on an 

elastic foundation are derived. Finally, the boundary condition treated in this paper is different from all the 

others [4-6]. 
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Derivation of the differential equation for the deflection of a circular plate subjected to lateral loads, as 

explained by McFarland et al. Al. 1972 was essential in understanding how circular plates respond to lateral 

loads. The four boundary conditions introduced enable further research on various scenarios, and 

understanding these conditions is essential for applications in engineering fields such as construction and 

machine design [9]. Jawad presented a general solution of circular plate deflection that shows how the plate 

can respond to loads when placed on an elastic foundation, and the saved solution provides a basis for further 

research on this topic. Furthermore, research on flexible nonhomogeneous circular plates placed on elastic 

foundations has yielded general solutions, expanding our understanding of how this type of plate can respond 

to loads, especially under axially symmetric loads and varying boundary conditions [10]. Solutions for large 

deformations of nonhomogeneous circular plates on elastic foundations have also been found, indicating that 

the research has taken extreme scenarios into account, which can be crucial in practical applications. The 

boundary conditions discussed in this paper differ from others, adding to our understanding of how different 

boundary conditions can influence plate behavior. Overall, this theory statement shows that in-depth research 

has been conducted on the deflection of circular plates, especially those placed on elastic foundations and 

those that exhibit nonhomogeneous properties, which is essential for fields such as structural design and 

structural failure analysis [11] [12]. 

2. Methods 

The previous schema of circular plate whose boundary is transversally loaded on elastic foundation is shown 

in Fig 1.  

 

Figure 1 Loads down from the wall distribute to the foundation uniformly 

As figure 1 shows, loads down from the wall distribute to the foundation uniformly. Namely we consider the 

circular plate sustains a load from Winckler’s ground as if a rigid body does. But it is erroneous because the 

circular plate is rather bent than not. In figure 1 a new schema we study now is introduced. This reflects an 

actuality more correctly than the previous. 

Here 

     N; a load magnitude per unit length on the circular wall 

     h; a height of circular plate 

     R; an outer radius of circular plate 

     R1; an inner radius of circular plate 

     b; a thickness of circular wall 
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     w ; a deflection of every point on the circular plate 

     c; a deflection on the boundary of circular plate 

     k; a foundation modular  

As we know, a deflection differential equation of circular plate is 

            

2 2 q
w

D
  =

  

Here 
q kw= −

, therefore   

2 2 k
w w

D
  = −

            (1)  

Boundary condition      

0

w C

w

r

= 


 
=        when        1r R R b= = −

    (2)     

Mathematically ① and ② is a boundary value problem of differential equation. 

Let’s begin solving on this problem. 

3. Result and Discussion 

In equations (1), (2)  let’s put w W C= +  

Then formula (1) becomes 
2 2 +

k k
W W C

D D
  = −                    (3) 

Formula (2) becomes      

0

0

W

W

r

= 


 
=  

      when   1r R R b= = −
      (4) 

In formula (3) Ｗ is a function of ｒ,therefore formula (3) becomes 

                 
2 2 ( )+ ( )

k k
W r W r C

D D
  = −              (5) 

For solving this we perform a variable transformation 

                   4( )
k

Z r
D

 = =  

Then formula (3) becomes 
2 2 (z) (z)W W C  + = −  and formula (4) becomes 

              
1

1

( )  0

( ) 0

r R

r R

W r

W r





=

=

=



 = 

                           (6) 

Next let’s consider the equilibrium condition of the plate. A load from the circular wall is equals to the 

reaction of ground. 
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 
1

2 2
1

0

( ) ( ) 2 2 ( )
2

R
b

kC R R k W r C rdr R N    − + + = −  

From 1R R b= −  ,  
0

2 ( ) ( ) 2 2 ( )
2 2

R b
b b

k R bC k W r C rdr R N   
−

− + + = −  

              
2

0

( )2 2 ( )
2

R b
b

R Ck kW r rdr R N   
−

+ = −              (7) 

Above equation is used to find out C. 

A corresponding homogeneous equation with (5) is  

2 2 0W W  + =               (8) 

If we consider particular solution of the Eq. 
2 2 (z) (z)W W C  + = −  to be Ws,    then   Ws=-C.  

 Ws ; special solution of the Eq. 
2 2 (z) (z)W W C  + = −  

From

2
2

2

1
=

d d

r drdr
 + , 

formula ⑧ becomes 

2 2( + )( ) 0i W iW  − = . (commutativity, linearity). 

2 2

2 2

1 1
( )( ) 0

d d d W dW
i iW

r dr r drdr dr
+ + + − = (Here r is denoted by Z). 

∴ 2 2( ) 0,  ( ) 0i W i W + =  − =  . 

Generally in an axial symmetric problem,
2( +A)W=0  is zero degree Bessel equation. 

Namely, 
1

+ 0
Z

W W AW  + = . 

Two homogeneous solutions of this Eq. are  

2
0

0

( 1)
( ) ( )

! ! 2

n
n

n

AZ
J AZ

n n



=

−
=  : zero degree Bessel function. 

2
0 0

0 1

2 2 ( 1) 1
( ) ( ) ( )

! ! 2

m m
m

n k

AZ
N AZ J AZ ln AZ

m m k 



= =

 −
= −  

 
  : zero degree von Neumann function. 

From now on, writing, 
2

m=0 1

( 1) 1
( ) ( )

! ! 2

m m
m

k

AZ
AZ

m m k



=

 −
=  

 
  , 
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then 

0 0

2 2
( ) ( ) ( )N AZ J AZ ln AZ AZ

 
= −  . 

These two functions are each other independent homogeneous solutions of a zero degree equation. 

Let’s find out a homogeneous solution when A i= . 

2
0

0

( 1)
( ) ( ) ( ) ( )

! ! 2

n n
n

n

i Z
J iZ a Z ib Z

n n



=

−
= = +  

Here 

2 2
4 4

0 0

( 1) ( 1)
( )= ( ) = ( )

(2 )!(2 )! 2 (2 )!(2 )! 2

n n n
n n

n n

i Z Z
a Z

n n n n

 

= =

− −
   

2 +1 2 +1 1
4 +2 4 2

0 0

( 1) ( 1)
( )= ( ) =i ( )

(2 +1)!(2 +1)! 2 (2 1)!(2 1)! 2

n n n
n n

n n

i Z Z
ib Z

n n n n

+ 
+

= =

− −

+ +
   

( ) Re ( ) Im ( )iZ Z i Z =  +   

2
4

0 1

( 1) 1
Re ( ) ( )

(2 )!(2 )! 2

n n
n

n k

Z
Z

n n k



= =

 −
 =  

 
   

1 2 1
4 2

0 1

( 1) 1
Im ( ) ( )

(2 1)!(2 1)! 2

n n
n

n k

Z
i Z i

n n k

+ +
+

= =

 −
 =  

+ + 
   

On the other hand, because, ( ) ln
4

ln iZ i Z


= +  , 

Therefore 0 NN ( )=Re (Z) Im ( )NiZ i Z+  

Here N

2
Re ( ) ( ln Re ( ))

4
Z a Z b Z




= − −   

2
Im ( ) ( ln Im ( ))

4
N Z b Z a Z




= + −    

N

2
Re ( ) ( ln Re ( ))Z a Z Z


= −   

2
Im ( ) ( ln Im ( ))N Z b Z b Z


= + −  . 

Finally  

         0( )= ( ) ( )J iZ a Z ib Z+ , 
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         0 NN ( )=Re ( ) Im ( )NiZ Z i Z+  

Become respectively solution of
2( ) 0i W + = . 

Similarly, about
2( ) 0i W − = , 

0( - )= ( )- ( )J iZ a Z ib Z  

0 NN ( - )=Re (Z)- Im ( )NiZ i Z  

Therefore a solution of 
2 2 2 2( 1) ( )( ) 0W i i W  + =  +  − =  can be expressed by a real number 

coefficient polynomial. Here four independent homogeneous solutions are N( ), ( ), Re (Z), Im ( )Na Z b Z Z . 

∴ ( ) ( )1 2 ( ) 3 N 4( ) Re ImZ NW C a Z C b C Z C Z C= + + + −  

Now let’s decide integral constants 1 2 3 4, , , C C C C . Precisely, ( ) 0r r
W

=
 .  

When 0Z → , then, ( ) ( ) ( ) ( )1,  0,  ln ,  Re 0,a Z b Z Z Z→ → →−  → ( )Im 0Z → . 

( ) ( )NRe ,  Im 0NZ Z→− → . Therefore C3=0. 

And this problem is axis symmetric, therefore ( ) 0
0r r

W
=

 = , 
0

0r r
Q

=
= . 

By the elastic theory 

3
2

3
0

1
= - ( )r

r

d d W d dW
Q D W D

dz dZ Z dZdZ=

  
 = − +  

  
. 

When Z 0→ ,  

2 2( ( )) 0,  ( ( )) 0
d d

a Z b Z
dz dz

 →  →  

2 2( Re ( )) 0,  ( Im ( )) 0
d d

Z Z
dz dz

  →   →  

We must notice the first term 
2 lnZ Z  of ImN(Z). The others 0→  

2 2 1
( ln ) 2 ln 2 lnZ Z Z Z Z Z Z Z

Z
 = + = +  

2 1
( ln ) 2ln 2 1 2 ln 3Z Z Z Z Z Z

Z
 = + + = +  

21 2 2
( ln ) 0Z Z

Z Z Z

 
 = + = 

 
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2 2
( ln )Z Z

Z
 =  

∴ 
2 2( ln )

d
Z Z

dz
  →
 

 

∴ ImN(Z) → , therefore C4=0. 

Hence  

1 2( ) ( )W C a Z C b Z C= + −  

)(),( ZbZa  are series, respectively. 

Upon ( )a Z , ( )b Z  we take the first, second terms respectively and then derivate, then 

4

( ) 1
64

Z
a Z = −  

2 6

( )
4 2304

Z Z
b Z = − +  

3

( )
16

Z
a Z = −  

5

( )
2 384

Z Z
b Z = − +  

Z r= , then 1 2 ( ) ( )W C a r C b r C = + −  

1

0
r R

W
=

= ,therefore 1 1 2 1 ( ) ( )C a R C b R C + =                          (9) 

1

0
r R

W
=

 = , therefore 

 1 1 2 1 ( ) ( ) 0C a R C b R   + =                        (10) 

The equilibrium condition is  

 
1

2 2
1 1 2

0

( ) 2 ( ) ( )

R

kC R R k C a r C b r rdr P   − + + =              (11) 

Here 2 ( )
2

b
P R N dN = − = . 2( )

2

b
d R= − . 

From ⑨, ⑪ , then 
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 
1 1

2 2
1 2 1 1 2

0 0

( ) ( ) ( ) 2 ( ) 2 ( )

R R
P dN

C a r C b r R R C a r rdr C b r rdr
k k

   


+ − + + = =    (12) 

From ⑩, ⑫, then 

1 1

1 1 1

2 2 2 2
1 1 1 1

20 0

( ) ( ) 0

( )( ) 2 ( ) ( )( ) 2 ( )

R R

a R b R C

P
a R R R a r rdr b R R R b r rdr

C k

 

   


      
     =     − + − +
       

 
 (13) 

Let’s describe the above formula simply by A×C=b.  

Here C= 1 2(  , )TC C , A is a coefficient matrix of C, b= (0 , )TP

k
. 

And detA= A =  

1 1

2 2 2 2
1 1 1 1 1 1

0 0

= ( ) ( )( ) 2 ( ) ( ) ( )( ) 2 ( )

R R

a R b R R R b r rdr b R a R R R a r rdr     
   

 − + − − +   
      

   (14) 

∴ 1 1( )
P

C b R
k




= −
1

·
detA

, 2 1( )
P

C a R
k




= −
1

·
detA

                    (15) 

P
C

k
=

1
·
detA

 1 1( ) ( ) ( ) ( )b R a r a R b r    − +                         (16) 

∴
P

W
k

=
1

·
detA

 1 1( ) ( ) ( ) ( )b R a r a R b r C    − + −                     (17) 

Here          
1

1

1

1

( )
( )=

( )
( )

Z R

Z R

da z
a R

dz

db z
b R

dz









=

=



 =

 

And 1 2( ) ( )W C a Z C b Z C= + − . w W C= + .  

Therefore 1 2( ) ( )w C a r C b r = + . 

From 1 1( )
P

C b R
k




= −
1

·
detA

 and 2 1( )
P

C a R
k




= −
1

·
detA

, 

Then 
P

w
k

=
1

·
detA

 1 1( ) ( ) ( ) ( )b R a r a R b r    − +  

In practical computations we take two terms, i.e. the first, second terms of   ( ),  ( )a Z b Z . 

Till now the deflection of circular plate whose boundary is elastic fixed on   Winckler has been studied. In 

the result the deflection w  is described by the polynomial. Till now the deflection of circular plate whose 
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boundary is elastic fixed on   Winckler has been studied. In the result the deflection w is described by the 

polynomial [7]. Circular plate deflection studies how circular plates bend/bend due to the applied load. The 

edge of the plate is assumed to be held elastically, meaning that the edge of the plate can still move slightly 

when bending occurs but is still held within the material's elastic limit. This differs from free or locked 

boundaries, which allow only accessible or zero movement. Winkler developed this theory to describe the 

deflection pattern of circular plates with elastic edge boundaries. The results show that a polynomial 

equation can describe the deflection w [8]. 

Using formulas of the elastic theory, one can calculate  internal forces and stresses after saving the deflection

w . 

2

2

1
r

d w dw
M D

dr r dr


 
= − + 

 
 

2

2

1d w dw
M D

dr r dr
 

 
= − + 

 
 

2( )r

d
Q D w

dr
= −   

2 2

2 2 2 2

1

1
r

EZ w w w

r r r r
 

 

  −   
= + +  

−     
 

2 2

2 2 2 2

1 1

1

EZ w w w

r r r r
 

 

 −   
= + + 

−    
 

2

1

1
r

EZ w

r r


 

−   
=  

−   
 . 

Substituting the deflection 1 2( ) ( )w C a r C b r = +  expressed by the polynomial  for the above formulas, we 

can write as follows. 

2

1 2

1 1
( ) ( ) ( ) ( )rM D C a r b r C b r a r

r r

 
    

 

    − −
 = + + −    

    
 

2

1 2

1 1
( ) ( ) ( ) ( )M D C a r b r C b r a r

r r


 
      

 

    − −
 = − − + +    

    
 

 3

1 2( ) ( )rQ D C b r C a r   = − − +  

2

1 22

1 1

1
r

EZ
C a b C b a

r r

  


  

    − −
 = + + −    

−     
 

2

1 22

1 1

1

EZ
C a b C b a

r r


  


  

    − − −
 = − + +    

−     
 

0r =  
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In this way the deflection and internal forces can be known easily, and then, one can check an accuracy of 

the method by the applied programs. 

Example 

Let’s consider the process derived in section 2 as an example. 

Data: 

4 3 7 23.5 , 0.3 , 0.2 , 2 10 / , , 2.6 10 / , 0.2    =80KN/m   = = = =  =  =R m h m b m k KN m N E KN m Let’s divide the 

whole interval ( 1r R R b= = − ) into ten, and calculate deflection w , internal forces rM and M  analysis 

by this paper and ANSYS (FEM). 

Comparison between these results is  

Table  1  presents  quantitative  data  on  deflections,  apparently  measured  over  several  intervals, perhaps 

in the  context of engineering structures or materials. This table has five columns, each representing  

"Interval,"  "r(m),"  "Deflection  (mm)  FEM  (ANSYS),"  "Deflection  (mm)  This Paper," and "Relative 

Error (%)." "Interval" appears to refer to different stages of a measurement or experiment, with the table 

covering 11 intervals. “r(m)” is a parameter that changes over the interval,  with  values  ranging  from  0  to  

3.3.  There  are  two  sets  of  deflection  measurements, "Deflection  (mm)  FEM  (ANSYS)"  and  

"Deflection  (mm)  This  Paper,"  which  appear  to  be measured in millimeters (mm), and each of these data 

sets has slightly different values for  each interval.  The  deflection,  according  to  FEM  (ANSYS),  changed  

from  1.40765  mm  in  the  first interval  to  -1.74329  mm  in  the  last  interval.  In  comparison,  the  

deflection,  according  to  this study,  changed  from  1.418432  mm  in  the  first  interval  to  -1.754  mm  in  

the  last  interval. “Relative  Error  (%)”  compares  the  relative  error  between  two  sets  of  deflection  

measurements, calculated as a percentage ranging from 0.55% to 0.97%. Overall, this table appears to 

compare two deflection measurement methods - one using FEM (ANSYS) and the other according to this 

study, as well as providing a measure of the relative error between these two methods. 

Table  2  presents  the  results  of  two  methods  of  calculating  the  moment,  or  a  measure  of  the rotation  

produced  by  a  force.  One  method  is  simulation  using  ANSYS's  FEM  (Finite  Element Method)  

software,  and  the  other  method  is  used  in  the  research  referenced  by  the  document (called "This 

paper" in the table). This moment is measured in kilonewton meters (KN·m). The value in each row shows 

the result of measuring or calculating the moment at a specific point or interval marked by the value 'r(m).' 

The value 'r(m)' refers to the radial distance in meters from a central point, perhaps in the context of a 

spherical or cylindrical structure, or it may refer to the distance  from  a  particular  reference  point.  For  

each  interval,  three  values  are  given: FEM(ANSYS):  This  is  the  moment  value  generated  by  the  

simulation  using  the  ANSYS  FEM software. This paper is the moment value produced by the calculation 

or research method used in this document. Relative error (%): The relative error between the two methods is 

measured as a percentage. This is calculated based on the difference between the value produced by the 

method in  this  study  and  the  value  produced  by  the  ANSYS  FEM  simulation.  These  figures  

generally indicate little difference between the two methods, with relatively small relative errors, typically 

less than 1%. This may indicate that the method used in this study provides very similar results to ANSYS 

FEM simulations and, therefore, may be considered valid or accurate in the context of this study. 

Table 3 compares the results of the FEM (Finite Element Method) model produced by ANSYS with  the  

results  proposed  in  this  paper.  Both  results  are  measured  in  Mθ  (KN·m)  and  are  also accompanied  

by  relative  errors  in  percentages.  At  Interval  1,  where  r  is  0,  the  FEM  result  is  - 28.8065, and the 

result of this paper is -29.0615, with a relative error of 0.88%. Furthermore, at Interval 2, where r is 0.33, the 

FEM result is -28.5679, the result of this paper is -28.7516, with a relative error of 0.64%. At Interval 3, 

where r is 0.66, the FEM result is -27.658, the result of this paper is -27.81, with a relative error of 0.55%. At 

Interval 4, where r is 0.99, the FEM result is - 25.976, the result of this paper is -26.2015, with a relative 

error of 0.86%. At Interval 5, where r is 1.32, the FEM result is -23.765, the result of this paper is -23.867, 

with a relative error of 0.43%.  At Interval 6, where r is 1.65, the FEM result is -20.576, the result of this 

paper is - 20.724, with a relative error of 0.72%. At Interval 7, where r is 1.98, the FEM result is -16.546, the 
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result of this paper is -16.6673, with a relative error of 0.73%. At Interval 8, where r is 2.31, the FEM result 

is -11.495, the result of this paper is -11.566, with a relative error of 0.61%. At Interval 9, where r is 2.64, the 

FEM result is -5.2224, and the result of this paper is -5.2678, with a relative error of 0.86%. At Interval 10, 

where r is 2.97, the FEM result is 2.3978, the result of this paper is 2.4044, with a relative error of 0.28%.  

Finally, at Interval 11, where r is 3.3, the FEM result is 11.588, the result of this paper is 11.651, with a 

relative error of 0.54%. From this table, we can see that the results produced by the FEM model are very 

close to the relative error, which is generally less than 1%. 

Table 1. Deflection w  

Interval r(m) 
Deflection (mm) 

FEM(ANSYS) This paper Relative error (%) 

1 0 1.40765 1.418432 0.76 

2 0.33 1.38754 1.396706 0.66 

3 0.66 1.32276 1.330484 0.58 

4 0.99 1.20478 1.216581 0.97 

5 1.32 1.04054 1.049515 0.86 

6 1.65 0.81567 0.821241 0.68 

7 1.98 0.51597 0.520785 0.92 

8 2.31 0.132756 0.133767 0.76 

9 2.64 -0.35489 -0.358174 0.92 

10 2.97 -0.9727 -0.978 0.55 

11 3.3 -1.74329 -1.754 0.63 

 

Table 2.  Mr 

Interval r(m) 
Mr (KN·m) 

FEM(ANSYS) This paper Relative error (%) 

1 0 -28.8065 -29.0615 0.88 

2 0.33 -28.298 -28.441 0.503 

3 0.66 -26.346 -26.549 0.76 

4 0.99 -23.078 -23.294 0.93 

5 1.32 -18.394 -18.522 0.69 

6 1.65 -11.976 -12.019 0.36 

7 1.98 -3.494 -3.51 0.44 

8 2.31 7.3219 7.3437 0.29 

9 2.64 20.853 20.939 0.42 

10 2.97 37.657 37.7357 0.21 

11 3.3 58.076 58.2548 0.31 

 

Table 3. Mθ 

Interval r(m) 
 Mθ (KN·m) 

FEM(ANSYS) This paper Relative error (%) 

1 0 -28.8065 -29.0615 0.88 

2 0.33 -28.5679 -28.7516 0.64 

3 0.66 -27.658 -27.81 0.55 

4 0.99 -25.976 -26.2015 0.86 

5 1.32 -23.765 -23.867 0.43 

6 1.65 -20.576 -20.724 0.72 

7 1.98 -16.546 -16.6673 0.73 

8 2.31 -11.495 -11.566 0.61 

9 2.64 -5.2224 -5.2678 0.86 

10 2.97 2.3978 2.4044 0.28 

11 3.3 11.588 11.651 0.54 
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5. Conclusion  

Above, we have calculated analytically the magnitude of the deflection and internal force on a circular plate 

whose edges are elastically supported on a base with elastic properties. This analytical calculation allows us 

to calculate the response of the plate correctly and efficiently due to the applied load. The elastic model used 

for the base and edge of the plate takes into account the flexible properties of the material so that it can be 

closer to actual conditions. Thus, the deflection and internal force calculations obtained from this analysis 

can be used as a reference for predicting the response of circular plates under similar conditions in the field. 

Of course, the assumptions and limitations in the developed mathematical model must be considered. 
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