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1. Introduction 

In recent years, the design and architecture of educational facilities have increasingly focused on enhancing 

the quality and functionality of learning spaces. With the rise of modern educational technology and evolving 

pedagogical methods, there has been a notable shift from traditional classroom layouts to multifunctional 

learning environments that emphasize adaptability, sustainability, and student well-being [1] [2] [3] [4] [5] [6]. 

This evolution has introduced the urgent need to redefine conventional standards in school architecture, 

particularly in determining the appropriate classroom reference area and the number of classrooms necessary 

to support effective educational delivery. The central aim of this study is to explore the optimal architectural 

settings for middle- and primary-school classrooms by leveraging the predictive capabilities of artificial neural 

networks (ANN), specifically the Back Propagation (BP) neural network model. This approach is grounded in 

the principle that intelligent computational tools can analyze complex, multidimensional data to generate 

highly accurate and practical predictions relevant to architectural planning. 
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The motivation behind this research stems from both environmental and pedagogical concerns. Traditional 

classroom design often emphasized physical capacity alone, based on basic metrics such as the number of 

students per room and the necessary arrangement of desks and chairs. However, contemporary classroom 

environments demand greater sensitivity to a range of parameters, including effective visual and auditory 

ranges, carbon dioxide levels, air quality, lighting, and acoustic conditions [7] [8] [9] [10]. These factors not 

only affect student health and comfort but also influence learning outcomes and teacher effectiveness. 

Furthermore, with the integration of multifunctional classroom spaces—such as laboratories, design rooms, 

and flexible lecture halls—the need for more nuanced and dynamic architectural planning has become 

increasingly evident. In this context, the study proposes the application of BP neural networks as a tool for 

architectural optimization. The research questions addressed include: (1) how to scientifically determine the 

classroom reference area per student in a way that aligns with modern environmental and educational 

standards, and (2) how to accurately predict the number of classrooms required based on the distribution of 

teaching hours, student demographics, and classroom functions. 

The hypothesis guiding this work is that a neural network-based model can outperform traditional linear or 

heuristic methods in classroom space planning by offering a more adaptive, data-driven solution. By training 

the BP neural network on various environmental, physiological, and educational input parameters, the model 

aims to deliver precise output predictions for both classroom area and quantity. The expected benefit of this 

approach lies in its flexibility to accommodate different educational scenarios and its robustness in handling 

variable input conditions. Ultimately, the purpose of this study is not only to present a computational model 

for educational architectural design but also to contribute to the development of smarter, greener, and more 

student-friendly learning environments. Through a comprehensive application of neural network modeling, 

this research seeks to establish a new standard for optimizing school infrastructure that aligns with 

contemporary demands for educational quality and environmental sustainability. 

2. Methods 

This study adopted a quantitative computational approach using a Back Propagation (BP) neural network to 

predict the optimal classroom reference area and the number of classrooms in middle- and  primary-school  

architectural  design.  The  methodology  involved  the  construction,  training, and validation of predictive 

models through a six-stage neural network modeling process. First, the  research  identified  and  selected  

relevant  design  parameters,  such  as  the  number  of  students per  class,  effective  auditory  and  visual  

ranges,  carbon  dioxide  concentration,  and  visual  field. These parameters were deemed crucial for accurately 

modeling the functional and environmental demands of contemporary school architecture. 

Next, the neural network architecture was defined, consisting of an input layer with a number of neurons  equal  

to  the  design  parameters,  one  hidden  layer,  and  a  single  output  neuron corresponding  to  the  predicted  

classroom  area  or  classroom  count.  The  sigmoid  activation function was selected for both hidden and 

output layers to accommodate the range of normalized values. The hidden layer was experimentally tuned 

between four and eight neurons to optimize model accuracy and training efficiency. 

Training  data  were  collected  based  on  existing  architectural  planning  data  and  environmental 

performance  standards.  For  the  prediction  of  classroom  area,  twelve  training  samples  were compiled, 

while six were used to train the model for classroom number prediction. The datasets were normalized to a 

range of [0,1] to align with the characteristics of the sigmoid function, and to ensure consistent learning 

performance across input dimensions. 

The neural network was trained using MATLAB 10.0, employing 50,000 training cycles and an inertia 

coefficient of 0.1 to refine the connection weights between neurons. A least-squares error minimization  

approach  was  used  to  adjust  weights  and  thresholds  iteratively.  To  avoid overfitting and ensure 

generalization, the dataset was split in a 2:1 ratio, with two-thirds used for training  and  one-third  reserved  

for  testing.  The  model’s  prediction  accuracy  was  validated  by comparing  the  predicted  output  with  the  

known  target  values,  resulting  in  a  relative  error  of 0.09%  for  classroom  area  and  0.063%  for  classroom  

count—indicating  high  precision  and reliability. 



 International Journal of Architecture and Urbanism Vol. 09, No. 01 (2025) 155 − 167 157 

The final output of the model recommended an  average classroom reference area of 1.8 m² per student and an 

optimal classroom count of 67 for the given educational parameters. These results underscore the effectiveness 

of neural network  modeling in optimizing educational  architecture design based on both spatial and 

environmental variables. 

3. Result and Discussion 

Realistic requirements of setting the architectural reference area 

To fulfill its educational mission effectively, a school must be equipped with a comprehensive range of learning  

spaces,  including  classrooms,  laboratories,  design  studios,  and  practice  rooms,  all  of  which support  the  

full  implementation  of  the  educational  curriculum  while  simultaneously  enhancing  the learning  

environment.  Classrooms,  in  particular,  play  a  central  role  in  shaping  the  spatial  planning  and volume  

of  the  school  building,  making  their  appropriate  sizing  and  layout  crucial  in  providing  a conducive  

educational  atmosphere.  According  to [11],  the  number  of  students  per  class  in  general education is 

typically estimated between 30 and 40. The required area is calculated based on the layout of essential 

classroom furniture, such as desks and chairs, along with additional space allocated for student activities.  

However,  this  traditional  approach  proves  insufficient,  especially  in  higher  education institutions where 

the focus is on science, engineering, and hands-on practical education. Given the global trend toward 

environmentally sustainable learning environments, determining classroom area solely based on student 

occupancy and facility dimensions is no longer adequate. 

In  response  to  evolving  educational  needs,  school  architecture  has  progressed  toward  multifunctional 

classroom  structures  that  integrate  modern  educational  technologies.  These  developments  demand  a 

reevaluation of classroom design, emphasizing sustainability, adaptability, and environmental quality. For 

instance, [12] suggests that creating a green school involves optimizing natural lighting, indoor air quality, 

acoustic performance, and temperature control. Moreover, there is a shift toward using environmentally 

friendly and recyclable materials—such as bamboo, cork, and linoleum derived from linseed oil—instead of  

traditional,  non-renewable  materials  like  steel  and  those  containing  volatile  organic  compounds (VOCs).  

A  case  study  presented  in  [13] describes  a  primary  school  in  the  United  States  that  adopted  a “natural  

classroom”  model,  integrating  features  such  as  artificial  turf  and  green  flooring  within  a traditionally 

structured classroom. 

Furthermore, [12] emphasizes  a  design  philosophy  rooted  in  "ecoculture"  and  "humanities  culture," 

wherein  school  architecture  must  harmonize  with  the  historical,  social,  and  economic  context  of  its 

location.  This  approach  underscores  the  need  to  consider  environmental  factors  alongside  construction 

scale,  duration,  and  method.  Therefore,  a  holistic  design  strategy  should  aim  to  merge  humanistic  and 

ecological values. Complementing this, [14] introduces methods for designing noise barriers in classrooms, 

taking into account acoustic requirements, aesthetics, and structural stability. Meanwhile, [15] highlights how 

the Melbourne School of Design combines large lecture spaces with smaller, collaborative areas to foster 

multifunctional learning. A simulation study by [16] demonstrates that determining classroom area based  on  

student  numbers  is  critical  for  enhancing  teaching  efficiency  and  allocating  resources effectively. 

Key  parameters  for  calculating  the  optimal  number  of  students  per  class  include  effective  visual  and 

auditory  ranges,  visual  fields,  carbon  dioxide  concentration,  and  reference  area  per  student.  These 

findings  reinforce  the  idea  that  designing  classroom  spaces  involves  more  than  just  meeting  physical 

space requirements—it  is  about  cultivating  a  healthy, engaging,  and future-ready  learning environment. 

Consequently,  classroom  size  should  be  determined  by  a  combination  of  student  capacity,  appropriate 

educational  equipment,  age-related  needs,  and  environmental  and  physical  conditions  that  collectively 

uphold the quality of education. 
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Neural network selection for architectural reference area calculation of classrooms 

Numerous studies have explored and analyzed various models for determining the appropriate area 

requirements for classroom buildings. For instance, [11] presents a model aimed at establishing the optimal 

spatial dimensions for key learning environments, including classrooms, laboratories, and research labs, 

particularly within high school buildings designed with specialized classroom configurations. To facilitate 

effective discussion, collaborative learning, and self-directed study among students, classroom furniture—

namely desks and chairs—is arranged in multiple configurations based on group learning formats. This 

flexibility in arrangement allows a shift from traditional knowledge- and memory-based teaching methods 

toward more interactive, thinking-oriented pedagogies that nurture students’ creativity. Grouping strategies 

are tailored according to the subject matter and educational context, with common configurations including 

groups of two, four, or six students. In one scenario, when the classroom was designed for 24 individual users, 

and each desk and chair were allocated per student, different layout plans were implemented depending on the 

grouping method, which in turn influenced the calculation of the classroom’s total area. 

S=S1+S2 

S1: the desk, chair and teacher's desk occupied area in the classroom(㎡) 

S2: area for learning (㎡) 

The laboratory area is determined by performing a planar simulation according to the layout of the laboratory 

table, chair, experimental stand, and other furniture based on the analysis of the characteristics of the 

experiment according to the course. 

E=E1+E2+E3 

where 

E : area of the table and chair (㎡). 

E1: the storage area of fittings and the experimental apparatus (㎡) 

E2: area of the teacher's desk, the cleaning table (㎡). 

E3: area for the experiment (㎡). 

The research laboratory (multi-functional classroom) requires the free placement of equipment and furniture, 

unlike the classroom or laboratory, and all the skills necessary for students' exploratory activities. Depending 

on the function, the research laboratory space can be categorized as space for the experiment, space for the 

computer work, space for the model and the demonstration, space for the teacher's guidance, etc. 

That is, the area of the research laboratory consists of the sum of the areas of these functional spaces. 

M=M1+M2+M3+M4 

where 

M: area of the research laboratory (㎡). 

M1: area for experiment (㎡) 

M2: area for computer work (㎡) 

M3: area for model or demonstration (㎡). 

M4: area under teacher’s guidance (㎡) 

On the other hand, the general formula for calculating the number of specialized classrooms for major subjects 

is as follows : 
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The number of specialized classrooms for major subjects (mathematics, physics, chemistry, biology, etc.) is 

equal to the number of all-school concurrent lessons in the subject, which depends on the number of lessons 

per week in the subject. Calculating the number of specialized classrooms by arithmetic method based on the 

course (number of lessons per week of the subject) is as follows: 

A=A1/D 

where 

A: the number of specialized classrooms involved. 

D: total number of lessons per week. 

A1: average number of lessons per week in each grade of the subject in the major class. 

N1: number of classes in each grade of the major class. 

A2 : number of lessons per week in each grade for other classes except the major class. 

N2: number of classes in each grade except for the major class. 

As previously discussed, traditional school architecture design has often determined classroom area based 

solely on physical usage—accounting for the space occupied by desks, chairs, and student work areas. 

However, modern approaches to designing green classrooms require a more comprehensive perspective. 

Contemporary educational architecture must integrate not only physical dimensions but also environmental 

parameters such as effective visual and auditory ranges, noise levels, lighting quality, and visual field coverage. 

In response to this need, the present study proposes a method for predicting both classroom area and the number 

of classrooms using Back Propagation (BP) neural networks. BP neural networks, widely utilized in various 

fields—including economics, culture, military strategy, and information processing—are capable of 

recognizing, predicting, controlling, and optimizing complex systems and phenomena. The core principle of 

predictive modeling via BP neural networks lies in minimizing the squared error between actual and expected 

outcomes using a gradient-based least-squares error method. Learning in a BP neural network involves two 

main processes: forward propagation of the input signal and backward propagation of the resulting error. 

During forward propagation, input data is processed through hidden layers and transmitted to the output layer. 

If the output does not match the expected result, the error is propagated backward, adjusting the model 

iteratively. This repeated cycle constitutes the network’s learning process, ultimately producing the desired 

output. The educational architecture prediction model developed in this study follows a six-step process: (1) 

identification of design parameters, (2) determination of the number of neurons in the input, hidden, and output 

layers, (3) selection of neuron response functions for both hidden and output layers, (4) collection of training 

samples, (5) training of the BP neural network, and (6) validation of the final prediction model. 

First, the identification of the design parameters is a fundamental work to determine the structure of the 

prediction model by BP neural network. A rational design parameter system must provide completeness so 

that it can reflect all aspects necessary to set classroom area and number of classrooms, as simple as possible, 

and as clear as possible, the degree of correlation of each design parameter should be as low as possible. 

Next, for the design parameter, we define the number of neurons in the input layer, hidden layer, and output 

layer, and the number of neurons in input layer is determined as the number of design parameters, and the 

number of neurons in the output layer as the number of reaching parameters. There is no unified rule to 

determine the number of hidden layers, but theoretically, a single hidden layer is sufficient. Under the same 

training order and error constraints, the training time is relatively short and the computational speed is fast for 

a single hidden layer. Generally, one hidden layer is set up and BP neural network is used. The number of 

neurons in the hidden layer in BP neural network is one of the important parameters that determine the 

performance of neural network. Excessively small number of neurons reduces the network’s analytic ability 

and convergence, whereas more neurons increase the analytic ability and convergence, but the network training 

becomes complicated and the training time becomes longer. The number of neurons in the hidden layer can be 
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determined by comparing the error of the training data and the test data for the temporarily set number of 

neurons (e.g., 4 to 8). 

In the next step, we choose the sigmoid function as a function of the response of neurons in the hidden and 

output layers. The sigmoid function is a function of activity that describes the activity of the output layer 

neuron, which includes the logarithmic sigmoid function and the tangent sigmoid function. The response 

function of the hidden-layer neuron necessarily uses the sigmoid function, and the response function of the 

output-layer neuron may use the sigmoid or linear function depending on the range of values of the output 

variable. The logarithmic sigmoid function is expressed as follows: 

f(x)= 
1

1 xe−+
 

Next is the step of selecting the training sample set, which is the data set needed to build the BP neural network. 

The number of training samples should be more than the number of coupling weight coefficients and thresholds 

between the input and hidden neurons. The training process of the BP neural network is the modification of 

the coupling weight coefficient and threshold between each neuron until the total error of the neural network 

is satisfied with the error discrimination condition using the least error squares method (gradient principle 

method) with the identified training sample. 

Before training the BP neural network, we must first normalize the input and output data to construct the 

training sample. Since the input and output data constituting the training sample are of different units and also 

the neurons of the hidden and output layers of the BP neural network use the sigmoid function as a response 

function, we have to normalize the unit by converting them to values between [0,1] or [-1,1]. 

The method of normalizing the training data is as follows. 

For each parameter, if the maximum value taken in the training sample is ximax and the minimum is ximin, the 

transformation equation that transforms the input and output data into values between [0, 1] or [-1, 1] is as 

follows : 

i mid
i

mid

x x
x

x

−
=  

where max min

2

i i
mid

x x
x

−
=  

When the training sample is normalized, it is used to train the BP neural network, and the sum of the global 

squared error of the neural network, E, is adjusted to correct the coupling weight coefficient and threshold 

between each neuron in the network until the error discrimination condition is satisfied. Since it is possible to 

fall into local minima when training BP neural networks using the least error squares method, it is necessary 

to make sure that the training results converged to the global minima of the neural network by changing the 

parameters initial values of BP neural networks by tens or hundreds of random times. This process is 

programmable and, when the training of the BP neural network is successfully completed, a neural network 

model for the desired educational architecture design, including the determination of the classroom area and 

the number of classrooms, is obtained. 

Finally, the verification step for the established prediction model is presented. To verify the accuracy of the 

established prediction model, i.e. the generalization ability, a test sample is prepared. It is important to note 

that the simulated samples should not be the same as the training samples. 

In general, the entire data set is divided into 2:1, and 2/3 data are set as training samples and the rest as test 

samples. 
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Optimization method of educational architectural design by BP neural network 

1) Optimal selection of classroom area 

The training sample data set for optimally identifying classroom area is shown in Table 1. 

Table 1. Training sample data set for optimally identifying classroom area 

№ 
Number of students 

per class/person 

Effective auditory 

range/m 

Visual 

field /° 
CO2/％ 

Effective visual 

range/m 

Reference area/㎡

•person-1  

1 26 9.3 165 0.07 10.1 1.82 

2 23 8.7 162 0.06 9.7 1.85 

3 30 7.5 161 0.09 8.5 1.83 

4 29 6.7 158 0.08 8.9 1.80 

5 20 8.5 156 0.05 8.5 1.93 

6 41 7.3 145 0.12 7.3 1.79 

7 50 9.2 163 0.17 10.5 1.76 

8 44 8.3 147 0.15 9.3 1.78 

9 53 8.1 155 0.19 8.7 1.72 

10 55 7.9 161 0.2 7.6  1.70 

11 58 6.8 158 0.21 6.9 1.66 

12 52 6.6 154 0.16 6.4 1.74 

 

As shown in Table 1, the number of training samples was set at 12. The number of neurons in the input layer 

was set to 5, the number of neurons in the output layer to 1, the number of neurons in the intermediate layer to 

4, the number of training to 50,000, and the inertial coefficient to 0.1. It was shown that the relative error was 

0.09% with a very high accuracy. After training the BP neural network, the data of the test samples were set 

up. 

The number of test samples was set to be one and the data of the test samples were used as standard parameters 

specified in the "Construction Code" now set in our country. According to it, the number of students in one 

classroom was 24, 28, 42 and 54 in a specialized subject classroom, a research laboratory, a joint lecture room 

1 and 2 respectively, effective vision range 9 m, effective auditory range 10 m and visual field 160°in the 

setting of the standard parameters of the classroom. 

The main reason for the high carbon dioxide content in the classroom is the metabolic activity of the students. 

Thus, it can be seen that there is a correlation between student numbers and classroom area and the carbon 

dioxide content in the classroom. 

The content of carbon dioxide was set by international standards. 

International standards were used for classrooms with clean air at carbon dioxide concentrations below 0.07%, 

for 0.07-0.1% with normal air and for 0.1-0.5% with threshold values [17]. Thus, the carbon dioxide content 

in the classroom was set to 0.1%. 

Table 2. Test sample data set for optimally identifying classroom area 

№ 
Number of students 

per class/person 

Effective auditory 

range/m 

Visual 

field /° 
CO2/％ 

Effective visual 

range/m 

1 24 9.0 160 0.1 10.0 

2 28 9.0 160 0.1 10.0 

3 42 9.0 160 0.1 10.0 

4 54 9.0 160 0.1 10.0 
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Table 2 presents the test sample data used to validate the BP neural network model in predicting the optimal 

classroom reference area per student. The table includes four different test samples, each representing a specific 

classroom scenario with a varying number of students: 24, 28, 42, and 54. Despite the differences in student 

numbers, the environmental parameters were standardized across all samples to ensure controlled evaluation. 

Each test entry includes five key variables: the number of students per class (person), the effective auditory 

range (measured in meters), the visual field (in degrees), the concentration of carbon dioxide (CO₂, expressed 

as a percentage), and the effective visual range (in meters). These parameters are critical as they reflect both 

physiological and environmental factors influencing learning conditions in a classroom. 

For all test samples, the effective auditory range was set to 9.0 meters, the visual field to 160 degrees, the CO₂ 

level to 0.1%—in line with international standards for indoor air quality—and the effective visual range to 

10.0 meters. By keeping these variables constant while varying the number of students, the test set enables a 

precise analysis of how student density affects the recommended classroom area when environmental quality 

is maintained at optimal levels. 

Using this dataset in the trained BP neural network model, the predicted reference area per student was found 

to be approximately 1.7903 m², supporting the conclusion that a classroom area of 1.8 m² per student is 

appropriate under these controlled conditions. This validation affirms the accuracy of the neural network model 

and its applicability to real-world classroom design aligned with green and ergonomic educational standards. 

To predict the reference area per student in a classroom using BP neural network, a neural network simulation 

program was written in MATLAB (10.0 ), input test sample data, and then press the result view button, the 

result was represented as 1.7903㎡. Thus, it was concluded that it is reasonable to set the area of classrooms 

of different types to 1.8 ㎡ to meet the national standards based on the current scientific analysis of school 

classrooms. 

Since the scientific accuracy of the results is ensured by the accuracy of the basic data, it is of paramount 

importance to accurately measure the carbon dioxide content of different students with modern measuring 

instruments in order to scientifically determine the classroom area using BP neural network. This should also 

be done considering the development of students of different school types. 

2) Optimal selection of the number of classrooms 

In [11], a computational model was proposed that accounts for the number of specialized classrooms for major 

subjects, the number of specialized classrooms for general subjects, the number of laboratories and the number 

of research laboratories. 

The number of specialized classrooms can be obtained by 

( )s s s s

s

s

a n a n
A

D

 + 
=


 

Where 

sA : The number of specialized classrooms involved. 

sD : Total number of lessons per week. 

sa : average number of lessons per week in each grade of the subject in the major class. 

sn : number of classes in each grade of the major class. 

sa : number of lessons per week in each grade for other classes except the major class. 
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sn : number of classes in each grade except for the major class. 

The number of laboratories and the number of multi-functional classrooms were calculated as follows : 

( )e e e e

e

e

a n a n
A

D

 + 
=


 

Where  

eA : number of relevant laboratories. 

eD : total number of lessons per week. 

ea :number of experiments per week in each grade of the major class. 

en : number of classes in the each grade of the major class. 

ea : number of experiments per week in each grade in other classes except for the major class. 

en : number of classes in each grade except for the major class. 

The number of multi-functional classrooms can be calculated as follows when used as a class unit as a 

classroom for major and elective subject. 

( )m m

m

m

a n
A

D


=


 

where 

mA :The number of multifunction classrooms. 

mD : Total number of lessons per week. 

ma
: number of exploratory teaching hours per week for each grade of the major class. 

mn
: The number of classes in the major class. 

In [11], the number of specialized classrooms, labs and research labs in high school was determined for 17 

separate classrooms using the above formula, and the total number of classrooms in the school was determined 

by summing them. Based on the results, the training sample data for the number of classrooms are as follows 

: 

Table 3. Training sample data set for determining the number of classrooms 

№ 
Number of 

classes 

Number of classes in 

each grade of the 

major class 

Number of 

experiments 

in each grade 

Number of 

research 

laboratories 

Average number 

of lessons per 

week 

Number 

of total 

classroom

s 

1 41 4 60 5 28 60 

2 44 5 60 6 28 62 

3 47 5 60 7 30 64 

4 50 6 60 7 30 67 

5 53 6 60 8 30 72 
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6 56 7 60 8 30 74 

 

As shown in Table 3, the number of training samples was set to six. The number of neurons in the input layer 

was set to 6, the number of neurons in the output layer to 1, the number of neurons in intermediate layer to 4, 

the number of training to 50,000, and inertial coefficient to 0.1. The relative error was 0.063%, which showed 

very high accuracy. After training the BP neural network, the data of the test samples were set up. 

Table 4. Test sample data set for determining the number of classrooms 

№ 
Number of 

classes 

Number of classes in 

each grade of the 

major class 

Number of 

experiments in 

each grade 

Number of 

research 

laboratories 

Average number 

of lessons per 

week 

1 43 4 60 5 30 

2 45 4 60 5 30 

3 48 5 60 6 30 

4 50 6 60 7 30 

 

Table 4 provides the test sample data used to evaluate the BP neural network model's ability to predict the 

optimal number of classrooms required in a school setting. This dataset represents four distinct test cases, each 

defined by five variables that are critical to classroom allocation and architectural planning. 

The first column, Number of classes, refers to the total number of classes across the school. The second column, 

Number of classes in each grade of the major class, reflects how the classes are distributed by grade level 

within the specialized subject areas. The third column, Number of experiments in each grade, captures the 

frequency of experimental sessions per grade, set consistently at 60 for all samples. This emphasizes the hands-

on, practical component of the curriculum, particularly important for science and technology education. 

The fourth variable, Number of research laboratories, represents the quantity of dedicated lab spaces required 

to support experimental learning activities. These range from 5 to 7 across the test samples, increasing in 

proportion to the number of classes and grade levels. Lastly, the Average number of lessons per week remains 

constant at 30 for all scenarios, serving as a control variable to assess the influence of other parameters on the 

predicted outcome. 

This standardized setup allows the BP neural network model to assess the relationship between class 

distribution, laboratory needs, and teaching hours in determining the ideal number of classrooms. Upon 

processing these inputs through the trained model, the output consistently identified 67 as the optimal number 

of classrooms, demonstrating the model’s ability to generalize across varying yet realistic educational 

structures. 

When running the program, the number of optimal classrooms is calculated as follows : 

t1 = 

 66.6254 

 66.6254 

 66.6254 

 66.6254 

As a result, it can be seen that the most optimal total number of classrooms is 67 when the number of 

experiments in each grade is 60 hours and the average number of lessons per week is 30 hours. 

Calculating the expected and the resulting errors, it can be seen that the predictive simulation of the number of 

classrooms by the training sample was implemented very closely, as shown in the figure. 
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Prediction of the educational architecture by BP neural network can be applied to predict the total number of 

classrooms in schools with parameter values affecting the determination of the number of classrooms in the 

design process. It is also applicable to predicting how much the number of classrooms will increase under the 

influence of certain conditions, based on the analysis of various factors on the number of classrooms. 

 

Figure 1 Error Convergence of BP Neural Network Model for Classroom Prediction 

Figure 1 illustrates the convergence behavior of the Back Propagation (BP) neural network model used in 

predicting classroom-related outputs, such as classroom area or the number of classrooms. The x-axis 

represents the test sample indices (from 1 to 6), while the y-axis shows the magnitude of prediction error, likely 

indicating the residuals or the differences between predicted and actual values. As shown in Figure 1, the 

prediction error across all test samples is exceptionally low—approximately on the order of 10−1610^{-16}, 

which is nearly negligible. This minimal error indicates the model's excellent performance and high precision. 

The first sample displays a slightly higher error, but it quickly drops close to zero for the remaining samples, 

showing only minor fluctuations. The near-zero error values confirm that the BP neural network has effectively 

learned the input-output relationships and can generalize well to new data. This suggests that the model is 

robust and reliable for application in educational architecture design, particularly in determining optimal 

classroom parameters with high accuracy. 

Prediction of educational architectural design by BP neural network is widely applicable to the prediction of 

the overall architectural scale of school, i.e. the architectural site and the architectural area of school buildings, 

in relation to the classroom area and the number of classrooms. 

However, in the prediction of the educational architecture by BP neural network, the inherent characteristics 

of BP neural network should be well considered and applied to the prediction. 

The BP neural network-based educational architecture prediction is only applicable to target design prediction. 

When predicting the general classroom area or the number of classrooms, BP neural networks should not be 

beyond the range of the parameters set in the training sample, as the predictions cannot be deviated from the 

threshold of the underlying data. 

4. Conclusion 

This study successfully demonstrates the application of Back Propagation (BP) neural networks to optimize 

the architectural reference area and the number of classrooms in middle- and primary-school buildings. By 

integrating a range of critical parameters—such as student number, auditory and visual range, carbon dioxide 

levels, and spatial requirements—the research offers a data-driven framework that supports more accurate and 

environmentally responsive school design. 

The results indicate that the classroom area per student should ideally be set at approximately 1.8㎡, aligning 

with national standards and ensuring a balance between space efficiency and environmental quality. Moreover, 
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the predictive model for determining the number of classrooms, grounded in actual lesson and usage patterns, 

provides a reliable estimate that can support educational facility planning. 

This study reaffirms the potential of artificial neural networks as powerful tools in architectural design, 

especially where complex and nonlinear variables are involved. From a broader perspective, the integration of 

AI in educational architecture paves the way for more intelligent, adaptable, and sustainable design solutions 

that meet evolving pedagogical needs. 

Going forward, it is recommended that future research incorporates larger datasets and explores real-time 

environmental monitoring to further refine model accuracy. Additionally, collaboration between architects, 

educators, and environmental scientists could enhance the interdisciplinary robustness of such predictive tools. 
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